By Topic

A comparison of power density for axial flux machines based on general purpose sizing equations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Surong Huang ; Coll. of Autom., Shanghai Univ., China ; Jian Luo ; Leonardi, F. ; Lipo, T.A.

Based on the concept of the converter fed machine (CFM), an optimal machine design can be considered as the best match of the machine topology, the power electronic converter and the performance specification. To compare power production potential of axial flux machines with various topologies, different waveforms of back EMF and current, general purpose sizing and power density equations for such machines are needed. In this paper, a general approach is presented to develop and to interpret these equations. Sample applications of the sizing and power density equations are the axial flux toroidal permanent magnet utilized to compare the axial flux toroidal permanent magnet (AFTPM) machine and the axial flux two-stator permanent magnet (AF2SPM) machine

Published in:

Energy Conversion, IEEE Transactions on  (Volume:14 ,  Issue: 2 )