By Topic

An interior point linear programming approach to two-scan data association

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Xinliang Li ; Appl. Dev. Center, IBM Canada Ltd., Toronto, Ont., Canada ; Zhi-Quan Luo ; Wong, K.M. ; Bosse, E.

We present an efficient two-scan data association method (TSDA) based on an interior point linear programming (LP) approach. In this approach, the TSDA problem is first formulated as a 3-dimensional assignment problem, and then relaxed to a linear program; the latter is subsequently solved by the highly efficient homogeneous, self-dual interior point LP algorithm. When the LP algorithm generates a fractional optimal solution, we use a technique similar to the joint probabilistic data association method (JPDA) to compute a weighted average of the resulting fractional assignments, and use it to update the states of the existing tracks generated by Kalman filters. Unlike the traditional single scan JPDA method, our TSDA method provides an explicit mechanism for track initiation. Extensive computer simulations have demonstrated that the new TSDA method is not only far more efficient in terms of low computational complexity, but also considerably more accurate than the existing single-scan JPDA method

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:35 ,  Issue: 2 )