Cart (Loading....) | Create Account
Close category search window
 

A data mining framework for building intrusion detection models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wenke Lee ; Dept. of Comput. Sci., Columbia Univ., New York, NY, USA ; Stolfo, S.J. ; Mok, K.W.

There is often the need to update an installed intrusion detection system (IDS) due to new attack methods or upgraded computing environments. Since many current IDSs are constructed by manual encoding of expert knowledge, changes to IDSs are expensive and slow. We describe a data mining framework for adaptively building Intrusion Detection (ID) models. The central idea is to utilize auditing programs to extract an extensive set of features that describe each network connection or host session, and apply data mining programs to learn rules that accurately capture the behavior of intrusions and normal activities. These rules can then be used for misuse detection and anomaly detection. New detection models are incorporated into an existing IDS through a meta-learning (or co-operative learning) process, which produces a meta detection model that combines evidence from multiple models. We discuss the strengths of our data mining programs, namely, classification, meta-learning, association rules, and frequent episodes. We report on the results of applying these programs to the extensively gathered network audit data for the 1998 DARPA Intrusion Detection Evaluation Program

Published in:

Security and Privacy, 1999. Proceedings of the 1999 IEEE Symposium on

Date of Conference:

1999

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.