By Topic

A short-channel DC SPICE model for polysilicon thin-film transistors including temperature effects

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Jacunski, M.D. ; Dept. of Electr. Eng., Virginia Univ., Charlottesville, VA, USA ; Shur, M.S. ; Owusu, A.A. ; Ytterdal, T.
more authors

A semi-empirical analytical model for the DC characteristics of both n- and p-channel polysilicon thin-film transistors is described. The model is suitable for implementation in a SPICE circuit simulator. Our semi-empirical approach results in a physically based model with a minimum of parameters, which are readily related to the device structure and fabrication process. The intrinsic DC model describes all four regimes of operation: leakage, subthreshold, above threshold, and kink. The effects of temperature and channel length are also included in the short-channel model

Published in:

Electron Devices, IEEE Transactions on  (Volume:46 ,  Issue: 6 )