Cart (Loading....) | Create Account
Close category search window

A new method for computing nonlinear carrier diffusion in semiconductor optical devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Causa, F. ; Sch. of Electron. & Electr. Eng., Bath Univ., UK ; Sarma, J. ; Balasubramanyam, R.

The solution of carrier diffusion equations typically associated with semiconductor optical devices has been achieved by combining a function expansion scheme, using the Hermite-Gauss functions as the basis set, with the collocation numerical procedure. Results for a wide range of cases obtained by this new scheme compare very favorably with those calculated with other methods. Not only is the present process computationally fast and efficient, but it has the added attraction of providing the basis for conveniently solving also the nonlinear electromagnetic wave equation for the self-consistent modeling of such devices

Published in:

Electron Devices, IEEE Transactions on  (Volume:46 ,  Issue: 6 )

Date of Publication:

Jun 1999

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.