By Topic

Two-dimensional retiming [VLSI design]

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Denk, T.C. ; Broadcom Corp., Irvine, CA, USA ; Parhi, K.K.

This paper considers two-dimensional (2-D) retiming, which is the problem of retiming circuits that operate on 2-D signals. We begin by discussing two types of parallelism available in 2-D data processing, which we call inter-iteration parallelism and inter-operation parallelism. We then present two novel techniques for 2-D retiming that can be used to extract inter-operation parallelism. These two techniques are designed to minimize the amount of memory required to implement a 2-D data-flow graph while maintaining a desired clock rate for the circuit. The first technique is based on an integer linear programming (ILP) formulation of the problem, and is called ILP 2-D retiming. This technique considers the entire 2-D retiming problem as a whole, but long central processing unit times are required if the circuit is large. The second technique, called orthogonal 2-D retiming, is a linear programming formulation which is derived by partitioning ILP 2-D retiming into two parts called s- and a-retiming. This technique finds a solution in polynomial time and is much faster than the ILP 2-D retiming technique, but the two sub problems (s- and a-retiming) can give results which are not compatible with one another. To solve this incompatibility problem, a variation of orthogonal 2-D retiming called integer orthogonal 2-D retiming is developed. This technique runs in polynomial time and the s-retiming and a-retiming steps are guaranteed to give compatible results. We show that the techniques presented in this paper can result in memory hardware savings of 50% compared to previously published 2-D retiming techniques.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:7 ,  Issue: 2 )