By Topic

Source-independent call acceptance procedures in ATM networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Rasmussen, C. ; Copenhagen Telephone Co., Denmark ; Sorensen, J.H. ; Kvols, K.S. ; Jacobsen, S.B.

Strategies for connection admission control in asynchronous transfer mode (ATM) networks are considered. Without any Poisson or renewal assumptions, two easily computable upper bounds on the time congestion in a finite buffer are derived. The first upper bound is valid for arbitrary peak and mean-rate-policed sources, whereas the second (and, in principle, tighter) bound is valid for sources of the on/off type. The tightnesses of the bounds are evaluated by a new periodic queuing model taking into account the maximum allowed burst duration. It is concluded that the bounds form a basis for a realization of a simple admission control algorithm. Furthermore, it is pointed out that the derivation of the on/off bound induces a decomposition of the queuing process into a cell-scale contribution and a burst-scale contribution, a decomposition which is superior to traditional Markov modulated approaches both in accuracy, and in offering insight into the queuing process

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:9 ,  Issue: 3 )