Cart (Loading....) | Create Account
Close category search window
 

Three-dimensional optical architecture and data-parallel algorithms for massively parallel computing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
1 Author(s)
Louri, A. ; Dept. of Electr. & Comput. Eng., Arizona Univ., AZ, USA

A 3-D optical architecture currently under investigation is described. This model, a single-instruction, multiple-data (SIMD) system, exploits spatial parallelism and processes 2-D binary images as fundamental computational entities using symbolic substitution logic. This system effectively implements highly structured data-parallel algorithms, such as signal and image processing, partial differential equations, multidimensional numerical transforms, and numerical supercomputing. The model includes a hierarchical mapping technique that helps design the algorithms and maps them onto the proposed optical architecture. The symbolic substitution logic and the mapping of data-parallel algorithms are discussed. The theoretical performance of the optical system was estimated and compared with that of electronic SIMD array processors. Preliminary results show that the system provides greater computational throughput and efficiency than its electronic counterparts.<>

Published in:

Micro, IEEE  (Volume:11 ,  Issue: 2 )

Date of Publication:

April 1991

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.