By Topic

Area efficient architectures for information integrity in cache memories

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Seongwoo Kim ; Dept. of Electr. Eng. & Comput. Eng., Iowa State Univ., Ames, IA, USA ; Somani, A.K.

Information integrity in cache memories is a fundamental requirement for dependable computing. Conventional architectures for enhancing cache reliability using check codes make it difficult to trade between the level of data integrity and the chip area requirement. We focus on transient fault tolerance in primary cache memories and develop new architectural solutions to maximize fault coverage when the budgeted silicon area is not sufficient for the conventional configuration of an error checking code. The underlying idea is to exploit the corollary of reference locality in the organization and management of the code. A higher protection priority is dynamically assigned to the portions of the cache that are more error-prone and have a higher probability of access. The error-prone likelihood prediction is based on the access frequency. We evaluate the effectiveness of the proposed schemes using a trace-driven simulation combined with software error injection using four different fault manifestation models. From the simulation results, we show that for most benchmarks the proposed architectures are effective and area efficient for increasing the cache integrity under all four models

Published in:

Computer Architecture, 1999. Proceedings of the 26th International Symposium on

Date of Conference: