By Topic

Thermal and electrical analysis of alumina and beryllia coax high-power windows under irradiation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

Characteristics of dielectric insulators in vacuum windows of coaxial 10 to 100 MHz transmission lines in high-power steady-state use under irradiation are simulated with respect to electric, nuclear, mechanical, and thermal properties. Neutron fluence ~5×1018 n/cm2 at the window is obtained to be sufficiently small to allow beryllia, but not alumina, to be used as dielectric. In beryllia (10-3 displacements per atom (dpa) due to irradiation) or in un-irradiated alumina (97.5% purity), the temperature is found to rise by not more than 125°C with maximum stress <140 MPa for 50 kV peak voltage at 60 MHz, provided niobium, titanium or materials with similar thermal expansion coefficients are used in water cooled conductors. The tangential electric field is kept well below the surface discharge limit 2 MV/m by using potential rings together with a sufficiently large inclination angle of the conical ceramic with respect to the radial coaxial direction, but high normal fields exceeding the vacuum breakdown limit are obtained near the potential rings. Abandoning the potential rings and deforming the equipotential lines by shaping the ceramic-conductor joint can reduce both tangential and normal field components below the breakdown limit, which appears to be in agreement with recent voltage test experiments

Published in:

Dielectrics and Electrical Insulation, IEEE Transactions on  (Volume:6 ,  Issue: 2 )