By Topic

Fingerprint classification by directional image partitioning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
R. Cappelli ; Corso di Laurea in Sci. dell'Inf., Bologna Univ., Italy ; A. Lumini ; D. Maio ; D. Maltoni

In this work, we introduce a new approach to automatic fingerprint classification. The directional image is partitioned into “homogeneous” connected regions according to the fingerprint topology, thus giving a synthetic representation which can be exploited as a basis for the classification. A set of dynamic masks, together with an optimization criterion, are used to guide the partitioning. The adaptation of the masks produces a numerical vector representing each fingerprint as a multidimensional point, which can be conceived as a continuous classification. Different search strategies are discussed to efficiently retrieve fingerprints both with continuous and exclusive classification. Experimental results have been given for the most commonly used fingerprint databases and the new method has been compared with other approaches known in the literature: As to fingerprint retrieval based on continuous classification, our method gives the best performance and exhibits a very high robustness

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:21 ,  Issue: 5 )