By Topic

Neuro-electronic interfacing with multielectrode arrays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Rutten, W.L.C. ; Dept. of Biomed. Eng., Twente Univ., Enschede, Netherlands ; Smit, J.P.A. ; Frieswijk, T.A. ; Bielen, J.A.
more authors

This article reports on the selectivity experimentally obtained with a hand-made 24-fold 2D array with electrodes spaced at 120 μm in the rat peroneal nerve and extensor digitorum longum muscle. We call the device 2D, as all the electrode tips lie in the same plane. The device itself is a 3D multiple needle array. The design and construction of a 128-fold 3D array in silicon- and glass technology is briefly described, as well as the fabrication of a 2D 128-fold array in silicon- and LIGA technology. Special attention is given to efficiency; i.e., the ratio of the number of successful electrodes contacting a single motor fiber to the total number of electrodes in the device. We also discuss whether microfabrication technology will allow a further increase in the number of electrode sites, or if an alternative way of interfacing, namely employing cell cultures on electrode substrates, will lead to higher efficiencies.

Published in:

Engineering in Medicine and Biology Magazine, IEEE  (Volume:18 ,  Issue: 3 )