By Topic

Clairvoyant and adaptive signal detection in non-Gaussian clutter: a data-dependent threshold interpretation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
F. Gini ; Dept. of Ingegneria dell'Inf., Pisa Univ., Italy ; M. V. Greco ; A. Farina

This paper addresses the problem of signal detection in correlated non-Gaussian clutter modeled as a spherically invariant random process. The optimum strategy to detect a constant signal, with either known or unknown complex amplitude, embedded in correlated Gaussian clutter is given by comparing the whitening-matched filter output with a fixed threshold. When the clutter is non-Gaussian, the performance of the matched filter sensibly degrades. The optimum strategy is the classical whitening-matched filter output compared with a data-dependent threshold. This interpretation provides a deeper insight into the structure of the optimum detector and allows us to single out a family of suboptimum detectors based on a polynomial approximation of the data-dependent threshold. They are easy to implement and have performance that is really close to the optimal. The adaptive implementation of the polynomial detectors is also investigated, and their performance is analyzed by means of Monte Carlo simulation for various clutter scenarios

Published in:

IEEE Transactions on Signal Processing  (Volume:47 ,  Issue: 6 )