Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Impulsive noise measurements and characterization in a UHF digital TV channel

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Sanchez, M.G. ; ETSI Telecomunicacion, Vigo Univ., Spain ; de Haro, L. ; Ramon, M.C. ; Mansilla, A.
more authors

This paper presents the results of a study covering measurement and characterization of the wide-band impulsive noise present in a digital TV radio channel. Measurements were conducted at a frequency of 762 MHz in different outdoor and indoor environments using vertical and horizontal polarization. The measurement system was built on commercial equipment only. The calibration process, which is an important stage of this kind of measurements, is described. To analyze the measurements the impulsive noise has been modeled as a pulse train where the pulse amplitude, pulse duration and elapsed time between pulses are considered random variables. It has been found that the pulse duration and elapsed time between pulses is not dependent on the antenna polarization while the pulse amplitude is, especially in the case of the noise generated by a fluorescent lamp. It has also been found that the pulse duration of the noise measured in the outdoor environments presents some clustering features and is correlated with the pulse amplitudes. This correlation may be caused by a RF noise bandwidth that is larger than the bandwidth of the measurement system. The noise in busy streets presents larger pulse durations, larger amplitude, and shorter elapsed time between pulses that the noise measured in a pedestrian area. Several statistical tests have been done to find the distribution function that best fits these random variables. Power Rayleigh, lognormal, exponential, Poisson, and Gamma distributions have been tested. According to the assessment carried out, none of the distribution functions is adequate to model the pulse amplitudes or the elapsed time between pulses, while the pulse duration seems to be Gamma distributed

Published in:

Electromagnetic Compatibility, IEEE Transactions on  (Volume:41 ,  Issue: 2 )