By Topic

Dynamic matching and scheduling of a class of independent tasks onto heterogeneous computing systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Maheswaran, M. ; Dept. of Comput. Sci., Manitoba Univ., Winnipeg, Man., Canada ; Ali, S. ; Siegal, H.J. ; Hensgen, D.
more authors

Dynamic mapping (matching and scheduling) heuristics for a class of independent tasks using heterogeneous distributed computing systems are studied. Two types of mapping heuristics are considered: on-line and batch mode heuristics. Three new heuristics, one for batch and two for on-line, are introduced as part of this research. Simulation studies are performed to compare these heuristics with some existing ones. In total, five on-line heuristics and three batch heuristics are examined. The on-line heuristics consider; to varying degrees and in different ways, task affinity for different machines and machine ready times. The batch heuristics consider these factors, as well as aging of tasks waiting to execute. The simulation results reveal that the choice of mapping heuristic depends on parameters such as: (a) the structure of the heterogeneity among tasks and machines, (b) the optimization requirements, and (c) the arrival rate of the tasks

Published in:

Heterogeneous Computing Workshop, 1999. (HCW '99) Proceedings. Eighth

Date of Conference: