Cart (Loading....) | Create Account
Close category search window

Performance of hybrid ARQ for IP packet transmission on fading channel

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Prasad, A.R. ; Wireless Commun. & Networking Div., Lucent Technol., Nieuwegein, Netherlands ; Shinohara, Y. ; Seki, K.

This paper proposes and analyzes the performance of a hybrid selective repeat (SR)/multicopy (MC) automatic repeat request (ARQ) scheme to transmit fragmented Internet protocol (IP) packets. The ARQ scheme works in the SR mode until the last IP packet fragment is transmitted. If a fragment is negatively acknowledged after the last fragment is transmitted, then the system goes in the MC mode. In the MC mode, multiple copies of the erroneous fragment are transmitted. After all IP fragments are received without error, the system goes back to the SR mode. The performance of the proposed scheme is evaluated in terms of the bit error rate (BER), IP packet size, and fragmentation size with and without Bose Chaudhuri Hocquenghem (BCH) error correction codes. Both the results are obtained under additive white Gaussian noise (AWGN) as well as flat Rayleigh fading channels. The proposed scheme gives a throughput of 0.9, even at high BER conditions, for any IP packet size under an AWGN channel while, an 8-dB improvement is achieved, when using BCH(63, 51, 2) for throughput of 0.9, over selective repeat+stutter scheme 2 (SR+ST 2) under a flat Rayleigh fading channel

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:48 ,  Issue: 3 )

Date of Publication:

May 1999

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.