By Topic

Use of magnetic Barkhausen noise and magnetic flux leakage signals for analysis of defects in pipeline steel

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
K. Mandal ; Bose (S.N.) Nat. Center, Calcutta, India ; D. Dufour ; D. L. Atherton

We report on studies of the effects of hoop and axial tensile stresses on magnetic flux leakage (MFL) signals from 50% penetration electrochemically milled pits eroded in line pipe steel. It is observed that stress can change the MFL signal by more than 50%, depending on the magnetization of the pipe wall. The studies were performed on pits created in both the absence and presence of 330-MPa hoop or axial tensile stress. The MFL results obtained in the two cases show detectable differences if the applied stress is high enough to create plastic deformation in the regions of stress concentration near the pits. The effect of stress applied during pit erosion is less than that when the same stress is applied during the subsequent measurements. Magnetic Barkhausen noise (MBN) measurements have been used to study the stress concentrations around electrochemically milled and mechanically drilled defects and have shown that significant additional stress and plastic deformation can be introduced during mechanical drilling. The MBN results are used to assist interpretation of the stress-dependent MFL results

Published in:

IEEE Transactions on Magnetics  (Volume:35 ,  Issue: 3 )