By Topic

Statistical textural features for detection of microcalcifications in digitized mammograms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jong Kook Kim ; Corp. Tech. Oper., Samsung Electron. Co. Ltd., Seoul, South Korea ; HyunWook Park

Clustered microcalcifications on X-ray mammograms are an important sign for early detection of breast cancer. Texture-analysis methods can be applied to detect clustered microcalcifications in digitized mammograms. In this paper, a comparative study of texture-analysis methods is performed for the surrounding region-dependence method, which has been proposed by the authors, and conventional texture-analysis methods, such as the spatial gray level dependence method, the gray-level run-length method, and the gray-level difference method. Textural features extracted by these methods are exploited to classify regions of interest (ROI's) into positive ROI's containing clustered microcalcifications and negative ROI's containing normal tissues. A three-layer backpropagation neural network is used as a classifier. The results of the neural network for the texture-analysis methods are evaluated by using a receiver operating-characteristics (ROC) analysis. The surrounding region-dependence method is shown to be superior to the conventional texture-analysis methods with respect to classification accuracy and computational complexity.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:18 ,  Issue: 3 )