By Topic

Robust neural adaptive stabilization of unknown systems with measurement noise

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Rovithakis, G.A. ; Dept. of Electron. & Comput. Eng., Tech. Univ. of Crete, Chania, Greece

In this paper, we consider the problem of adaptive stabilizing unknown nonlinear systems whose state is contaminated with external disturbances that act additively. A uniform ultimate boundedness property for the actual system state is guaranteed, as well as boundedness of all other signals in the closed loop. It is worth mentioning that the above properties are satisfied without the need of knowing a bound on the “optimal” weights, providing in this way higher degrees of autonomy to the control system. Thus, the present work can be seen as a first approach toward the development of practically autonomous systems

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:29 ,  Issue: 3 )