By Topic

Genetic K-means algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
K. Krishna ; Dept. of Electr. Eng., Indian Inst. of Sci., Bangalore, India ; M. Narasimha Murty

In this paper, we propose a novel hybrid genetic algorithm (GA) that finds a globally optimal partition of a given data into a specified number of clusters. GA's used earlier in clustering employ either an expensive crossover operator to generate valid child chromosomes from parent chromosomes or a costly fitness function or both. To circumvent these expensive operations, we hybridize GA with a classical gradient descent algorithm used in clustering, viz. K-means algorithm. Hence, the name genetic K-means algorithm (GKA). We define K-means operator, one-step of K-means algorithm, and use it in GKA as a search operator instead of crossover. We also define a biased mutation operator specific to clustering called distance-based-mutation. Using finite Markov chain theory, we prove that the GKA converges to the global optimum. It is observed in the simulations that GKA converges to the best known optimum corresponding to the given data in concurrence with the convergence result. It is also observed that GKA searches faster than some of the other evolutionary algorithms used for clustering

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)  (Volume:29 ,  Issue: 3 )