By Topic

Learning in multilevel games with incomplete information. II

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jing Zhou ; Div. of Adv. Syst., Motorola Inc., Phoenix, AZ, USA ; Billard, E. ; Lakshmivarahan, S.

Multilevel games are abstractions of situations where decision makers are distributed in a network environment. In Part I of this paper, the authors present several of the challenging problems that arise in the analysis of multilevel games. In this paper a specific set up is considered where the two games being played are zero-sum games and where the decision makers use the linear reward-inaction algorithm of stochastic learning automata. It is shown that the effective game matrix is decided by the willingness and the ability to cooperate and is a convex combination of two zero-sum game matrices. Analysis of the properties of this effective game matrix and the convergence of the decision process shows that players tend toward noncooperation in these specific environments. Simulation results illustrate this noncooperative behavior

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:29 ,  Issue: 3 )