By Topic

A novel approach to the design of unknown input observers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Guan, Y. ; Sch. of Eng. Sci., Simon Fraser Univ., Burnaby, BC, Canada ; Saif, M.

A novel state estimator design scheme for linear dynamical systems driven by partially unknown inputs is presented. It is assumed that there is no information available about the unknown inputs, and thus no prior assumption is made about the nature of these inputs. A simple approach for designing a reduced-order unknown input observer (UIO) with pole-placement capability is proposed. By carefully examining the dynamic system involved and simple algebraic manipulations, it is possible to rewrite equations eliminating the unknown inputs from part of the system and to put them into a form where it could be partitioned into two interconnected subsystems, one of which is directly driven by known inputs only. This makes it possible to use a conventional Luenberger observer with a slight modification for the purpose of estimating the state of the system. As a result, it is also possible to state similar necessary and sufficient conditions to those of a conventional observer for the existence of a stable estimator and also arbitrary placement of the eigenvalues of the observer. The design and computational complexities involved in designing UIOs are greatly reduced in the proposed approach

Published in:

Automatic Control, IEEE Transactions on  (Volume:36 ,  Issue: 5 )