Scheduled System Maintenance:
On Wednesday, July 29th, IEEE Xplore will undergo scheduled maintenance from 7:00-9:00 AM ET (11:00-13:00 UTC). During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

A renewal theoretic analysis of a class of manufacturing systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Malhame, R.P. ; Dept. of Electr. Eng., Ecole Polytech. de Montreal, Que., Canada ; Boukas, E.-K.

The authors present the partial differential equations (PDEs) describing the transients of the probability density functions (PDFs) characterizing the statistical evolution of a manufacturing system producing a single product under hedging-point control policies. The authors demonstrate the Markov renewal nature of the dynamics of the controlled process and use the system of PDEs to compute the transition kernel of that renewal process. This Markov renewal viewpoint is particularly useful in discussing ergodicity in view of the abundant literature on the asymptotic behavior of Markov renewal processes. Moreover, besides allowing direct determination of system steady state, when it exists, it permits the computation of various statistics, as well as, in some cases, the derivation of bounds on the speed of convergence to steady state

Published in:

Automatic Control, IEEE Transactions on  (Volume:36 ,  Issue: 5 )