By Topic

A neural-statistical approach to multitemporal and multisource remote-sensing image classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
L. Bruzzone ; Dept. of Biophys. & Electron. Eng., Genoa Univ., Italy ; D. F. Prieto ; S. B. Serpico

A data fusion approach to the classification of multisource and multitemporal remote-sensing images is proposed. The method is based on the application of the Bayes rule for minimum error to the “compound” classification of pairs of multisource images acquired at two different dates. In particular, the fusion of multisource data is obtained by using multilayer perceptron neural networks for a nonparametric estimation of posterior class probabilities. The temporal correlation between images is taken into account by the prior joint probabilities of classes at the two dates. As a novel contribution of this paper, such joint probabilities are automatically estimated by applying a specific formulation of the expectation-maximization (EM) algorithm to the data to be classified. Experiments carried out on a multisource and multitemporal data set confirmed the effectiveness of the proposed approach

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:37 ,  Issue: 3 )