By Topic

Cryosphere applications of NSCAT data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Long, D.G. ; Dept. of Electr. & Comput. Eng., Brigham Young Univ., Provo, UT, USA ; Drinkwater, M.R.

Though designed to measure vector winds over the ocean, new imaging techniques facilitate the use of NASA scatterometer data (NSCAT) in cryosphere studies. NSCAT provides data of unprecedented coverage, resolution, and quality which, when coupled with the scatterometer image reconstruction with filtering (SIRF) algorithm, enables images of σo at resolutions approaching 8 km over stationary targets. Such images are useful in ice mapping and classification, and multidecadal studies are possible by comparison with Seasat Scatterometer (SASS) data. The utility of NSCAT data in polar ice studies is illustrated through a review of two cryosphere applications of NSCAT data: (1) sea-ice mapping and tracking and (2) ice-sheet change in Greenland and Antarctica. The wide swath and frequent revisit, coupled with incidence and azimuth angle diversity makes NSCAT data very effective in mapping the extent of sea-ice. In Greenland, snow and ice “facies” are clearly delineated on the basis of the seasonally dependent radar backscattering cross section, due to sensitivity of radar backscatter to diagenetic changes occurring at and beneath the surface. Comparison of NSCAT and SASS data enables study of change in Greenland between 1978 and 1996

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:37 ,  Issue: 3 )