Cart (Loading....) | Create Account
Close category search window
 

Self-timing and vector processing in RSFQ digital circuit technology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

As the operating speed of rapid single flux quantum (RSFQ) integrated circuits and systems increases, timing uncertainty from fabrication process variations makes global synchronization very hard. In this paper, the authors present a globally asynchronous, locally synchronous timing methodology for RSFQ digital design, which can solve the global synchronization problem. They also demonstrate the recent experimental results of some asynchronous circuits and systems implemented in RSFQ technology. Key components such as a self-timed shift register, a self-timed demultiplexor, a Muller-C element, a completion detector, and a clock generator have been designed and tested. High-speed operation has been confirmed up to 20 Gb/s for a prototype data buffer system, which consists of two self-timed shift registers and an on-chip 8-28-GHz clock generator.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:9 ,  Issue: 1 )

Date of Publication:

March 1999

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.