By Topic

2.5-THz GaAs monolithic membrane-diode mixer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Siegel, P.H. ; Jet Propulsion Lab., California Inst. of Technol., Pasadena, CA, USA ; Smith, R.P. ; Graidis, M.C. ; Martin, S.C.

A novel GaAs monolithic membrane-diode (MOMED) structure has been developed and implemented as a 2.5-THz Schottky diode mixer. The mixer blends conventional machined metallic waveguide with micromachined monolithic GaAs circuitry to form, for the first time, a robust, easily fabricated, and assembled room-temperature planar diode receiver at frequencies above 2 THz. Measurements of receiver performance, in air, yield at Treceiver of 16500-K double sideband (DSB) at 8.4-GHz intermediate frequency (IF) using a 150-K commercial Miteq amplifier. The receiver conversion loss (diplexer through IF amplifier input) measures 16.9 dB in air, yielding a derived “front-end” noise temperature below 9000-K DSB at 2514 GHz. Using a CO2-pumped methanol far-infrared laser as a local oscillator at 2522 GHz, injected via a Martin-Puplett diplexer, the required power is ≈5 mW for optimum pumping and can be reduced to less than 3 mW with a 15% increase in receiver noise. Although demonstrated as a simple submillimeter-wave mixer, the all-GaAs membrane structure that has been developed is suited to a wide variety of low-loss high-frequency radio-frequency circuits

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:47 ,  Issue: 5 )