By Topic

Fiber-optic millimeter-wave downlink system using 60 GHz-band external modulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kuri, T. ; Div. of Photonics Technol., Minist. of Posts & Telecommun., Tokyo, Japan ; Kitayama, K. ; Stohr, A. ; Ogawa, Y.

In this paper, a fiber-optic millimeter-wave (mm-wave) downlink system using 60 GHz-band external modulation is investigated. We prepare the fiber-optic 60 GHz-band mm-wave downlink testbed. It consists of an optical modulation section with a mm-wave signal generator, an optical single sideband (SSB) filter, a standard single-mode fiber (SMF), an optical detection section with a 60 GHz-band radio transmitter and a 60 GHz-band radio receiver. To modulate the laser output with 60 GHz-band mm-wave signals directly, a specially designed electro-absorption modulator with high-efficiency at around 60 GHz is used. The use of this modulator makes the simpler system configuration possible. Using the downlink testbed, the 5 m-long free-space propagation of subcarrier multiplexed 156 Mb/s-DPSK 60 GHz-band mm-wave signals recovered by optical direct detection is successfully demonstrated. The transmission of the mm-wave signals over 85 km-long standard SMF is also successfully demonstrated, using an optical SSB filtering technique to overcome the fiber dispersion. The BER of 10-9 is achievable at the optical received power of -7.0 dBm

Published in:

Lightwave Technology, Journal of  (Volume:17 ,  Issue: 5 )