By Topic

Hybridizing rule-based power system stabilizers with genetic algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Abido, M.A. ; Dept. of Electr. Eng., King Fahd Univ. of Pet. & Miner., Dhahran, Saudi Arabia ; Abdel-Magid, Y.L.

A hybrid genetic rule-based power system stabilizer (GRBPSS) is presented in this paper. The proposed approach uses genetic algorithms (GA) to search for optimal settings of rule-based power system stabilizer (RBPSS) parameters. Incorporation of GA in RBPSSs design will add an intelligent dimension to these stabilizers and significantly reduce the time consumed in the design process. It is shown in this paper that the performance of RBPSS can be improved significantly by incorporating a genetic-based learning mechanism. The performance of the proposed GRBPSS under different disturbances and loading conditions is investigated for a single machine infinite bus system and two multimachine power systems. The results show the superiority of the proposed GRBPSS as compared to both conventional lead-lag PSS (CPSS) and classical RBPSS. The capability of the proposed GRBPSS to damp out the local as well as the interarea modes of oscillations is also demonstrated

Published in:

Power Systems, IEEE Transactions on  (Volume:14 ,  Issue: 2 )