By Topic

Teaching distribution system reliability evaluation using Monte Carlo simulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Billinton, R. ; Dept. of Electr. Eng., Saskatchewan Univ., Saskatoon, Sask., Canada ; Peng Wang

Analytical techniques for distribution system reliability assessment can be effectively used to evaluate the mean values of a wide range of system reliability indices. This approach is usually used when teaching the basic concepts of distribution system reliability evaluation. The mean or expected value, however, does not provide any information on the inherent variability of an index. Appreciation of this inherent variability is an important parameter in comprehending the actual reliability experienced by a customer and should be recognized when teaching distribution system reliability evaluation. This paper presents a time sequential Monte Carlo simulation technique which can be used in complex distribution system evaluation, and describes a computer program developed to implement this technique. General distribution system elements, operating models and radial configurations are considered in the program. The results obtained using both analytical and simulation methods are compared. The mean values and the probability distributions for both load point and system indices are illustrated using a practical test system

Published in:

Power Systems, IEEE Transactions on  (Volume:14 ,  Issue: 2 )