By Topic

A hybrid estimator for selectivity estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yibei Ling ; Commun. Res. Lab., Bellcore, Morristown, NJ, USA ; Wei Sun ; Rishe, N.D. ; Xianjing Xiang

Traditional sampling-based estimators infer the actual selectivity of a query based purely on runtime information gathering, excluding the previously collected information, which underutilizes the information available. Table-based and parametric estimators extrapolate the actual selectivity of a query based only on the previously collected information, ignoring online information, which results in inaccurate estimation in a frequently updated environment. We propose a novel hybrid estimator that utilizes and optimally combines the online and previously collected information. A theoretical analysis demonstrates that the online and previously collected information is complementary, and that the comprehensive utilization of the online and previously collected information is of value for further performance improvement. Our theoretical results are validated by a comprehensive experimental study using a practical database, in the presence of insert, delete and update operations. The hybrid approach is very promising in the sense that it provides an adaptive mechanism that allows the optimal combination of information obtained from different sources in order to achieve a higher estimation accuracy and reliability

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:11 ,  Issue: 2 )