By Topic

Minimax emission computed tomography using high-resolution anatomical side information and B-spline models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hero, A.O. ; Dept. of Electr. Eng. & Comput. Sci., Michigan Univ., Ann Arbor, MI, USA ; Piramuthu, R. ; Fessler, J.A. ; Titus, S.R.

In this paper a minimax methodology is presented for combining information from two imaging modalities having different intrinsic spatial resolutions. The focus application is emission computed tomography (ECT), a low-resolution modality for reconstruction of radionuclide tracer density, when supplemented by high-resolution anatomical boundary information extracted from a magnetic resonance image (MRI) of the same imaging volume. The MRI boundary within the two-dimensional (2-D) slice of interest is parameterized by a closed planar curve. The Cramer-Rao (CR) lower bound is used to analyze estimation errors for different boundary shapes. Under a spatially inhomogeneous Gibbs field model for the tracer density a representation for the minimax MRI-enhanced tracer density estimator is obtained. It is shown that the estimator is asymptotically equivalent to a penalized maximum likelihood (PML) estimator with resolution-selective Gibbs penalty. Quantitative comparisons are presented using the iterative space alternating generalized expectation maximization (SAGE-FM) algorithm to implement the PML estimator with and without minimax weight averaging

Published in:

Information Theory, IEEE Transactions on  (Volume:45 ,  Issue: 3 )