By Topic

Analysis of multiresolution image denoising schemes using generalized Gaussian and complexity priors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Moulin, P. ; Beckman Inst. for Adv. Sci. & Technol., Illinois Univ., Urbana, IL, USA ; Juan Liu

Research on universal and minimax wavelet shrinkage and thresholding methods has demonstrated near-ideal estimation performance in various asymptotic frameworks. However, image processing practice has shown that universal thresholding methods are outperformed by simple Bayesian estimators assuming independent wavelet coefficients and heavy-tailed priors such as generalized Gaussian distributions (GGDs). In this paper, we investigate various connections between shrinkage methods and maximum a posteriori (MAP) estimation using such priors. In particular, we state a simple condition under which MAP estimates are sparse. We also introduce a new family of complexity priors based upon Rissanen's universal prior on integers. One particular estimator in this class outperforms conventional estimators based on earlier applications of the minimum description length (MDL) principle. We develop analytical expressions for the shrinkage rules implied by GGD and complexity priors. This allows us to show the equivalence between universal hard thresholding, MAP estimation using a very heavy-tailed GGD, and MDL estimation using one of the new complexity priors. Theoretical analysis supported by numerous practical experiments shows the robustness of some of these estimates against mis-specifications of the prior-a basic concern in image processing applications

Published in:

Information Theory, IEEE Transactions on  (Volume:45 ,  Issue: 3 )