Cart (Loading....) | Create Account
Close category search window
 

Type II codes, even unimodular lattices, and invariant rings

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Bannai, E. ; Graduate Sch. of Math., Kyushu Univ., Fukuoka, Japan ; Dougherty, S.T. ; Harada, M. ; Oura, M.

We study self-dual codes over the ring Z2k of the integers modulo 2k with relationships to even unimodular lattices, modular forms, and invariant rings of finite groups. We introduce Type II codes over Z2k which are closely related to even unimodular lattices, as a remarkable class of self-dual codes and a generalization of binary Type II codes. A construction of even unimodular lattices is given using Type II codes. Several examples of Type II codes are given, in particular the first extremal Type II code over Z6 of length 24 is constructed, which gives a new construction of the Leech lattice. The complete and symmetrized weight enumerators in genus g of codes over Z2k are introduced, and the MacWilliams identities for these weight enumerators are given. We investigate the groups which fix these weight enumerators of Type II codes over Z2k and we give the Molien series of the invariant rings of the groups for small cases. We show that modular forms are constructed from complete and symmetrized weight enumerators of Type II codes. Shadow codes over Z2k are also introduced

Published in:

Information Theory, IEEE Transactions on  (Volume:45 ,  Issue: 4 )

Date of Publication:

May 1999

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.