System Maintenance:
There may be intermittent impact on performance while updates are in progress. We apologize for the inconvenience.
By Topic

Performance evaluation and analysis of monocular building extraction from aerial imagery

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Shufelt, J.A. ; Dept. of Comput. Sci., Carnegie Mellon Univ., Pittsburgh, PA, USA

Research in monocular building extraction from aerial imagery has neglected performance evaluation in three areas: unbiased metrics for quantifying detection and delineation performance, an evaluation methodology for applying these metrics to a representative body of test imagery, and an approach for understanding the impact of image and scene content on building extraction algorithms. This paper addresses these areas with an end-to-end performance evaluation of four existing monocular building extraction systems, using image space and object space-based metrics on 83 test images of 18 sites. This analysis is supplemented by an examination of the effects of image obliquity and object complexity on system performance, as well as a case study on the effects of edge fragmentation. This widely applicable performance evaluation approach highlights the consequences of various traditional assumptions about camera geometry, image content and scene structure, and demonstrates the utility of rigorous photogrammetric object space modeling and primitive-based representations for building extraction

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:21 ,  Issue: 4 )