Cart (Loading....) | Create Account
Close category search window

On the use of interpolated second-order polynomials for efficient filter design in programmable downconversion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Oh, H.J. ; Dept. of Electr. Eng., Korea Adv. Inst. of Sci. & Technol., Seoul, South Korea ; Sunbin Kim ; Ginkyu Choi ; Lee, Yong H.

Interpolated second-order polynomials (ISOPs) are proposed to design efficient cascaded integrator-comb (CIC)-based decimation filters for a programmable downconverter. It is shown that some simple ISOPs can effectively reduce the passband droop caused by CIC filtering with little degradation in aliasing attenuation. In addition, ISOPs are shown to be useful for simplifying halfband filters that usually follow CIC filtering. As a result, a modified halfband filter (MHBF) is introduced which is simpler than conventional halfband filters. The proposed decimation filter for programmable downconverter is a cascade of a CIC filter, an ISOP, MHBFs, and a programmable finite impulse response filter. A procedure for designing the decimation filter is developed. In particular, an optimization technique that simultaneously designs the ISOP and programmable FIR filters is presented. Design examples demonstrate that the proposed method leads to more efficient programmable downconverters than existing ones

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:17 ,  Issue: 4 )

Date of Publication:

Apr 1999

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.