Cart (Loading....) | Create Account
Close category search window

Hydrogen dilution effect on the properties of coplanar amorphous silicon thin-film transistors fabricated by inductively-coupled plasma CVD

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kim, Sung Ki ; Dept. of Phys., Kyung Hee Univ., Seoul, South Korea ; Young Jin Choi ; Cho, Kyu Sik ; Jin Jang

The electrical and optical properties of the hydrogenated amorphous silicon (a-Si:H) films deposited by inductively-coupled plasma (ICP) chemical vapor deposition (CVD) with a variation of H2 flow rate have been studied. The photosensitivity of a-Si:H is ~107 when the H2/SiH4 ratio is between 3 and 8. With increasing H2/SiH4, the SiH2 mode infrared absorption has a minimum at a H2/SiH4 ratio of 8. Coplanar a-Si:H thin-film transistors (TFT's) were fabricated using a triple layer of thin a-Si:H, silicon-nitride, and a-Si:H deposited by ICP-CVD using ion doping and low resistivity Ni silicide. After patterning the thin a-Si:H/silicon-nitride layers on the channel region, the gate and source/drain regions were ion-doped and then heated at 230°C to form Ni silicide layers. The low resistive Ni silicide formed on the a-Si:H reduces the offset length between gate and source/drain, leads to a coplanar a-Si:H TFT. The TFT exhibited a field effect mobility of 0.6 cm2/Vs and a threshold voltage of 2.3 V at the H2/SiH4 ratio of 8. The effect of H2 dilution in SiH4 on the coplanar a-Si:H TFT performance has been investigated. We found that the performance of the TFT is the best when the SiH2 mode density in a-Si:H is the minimum. The coplanar TFT is very suitable for large-area, high density TFT displays because of its low parasitic capacitance between gate and source/drain contacts

Published in:

Electron Devices, IEEE Transactions on  (Volume:46 ,  Issue: 5 )

Date of Publication:

May 1999

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.