By Topic

Partition-based weighted sum filters for image restoration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Barner, K.E. ; Dept. of Electr. & Comput. Eng., Delaware Univ., Newark, DE, USA ; Sarhan, A.M. ; Hardie, R.C.

We develop the concept of partitioning the observation space to build a general class of filters referred to as partition-based weighted sum (PWS) filters. In the general framework, each observation vector is mapped to one of M partitions comprising the observation space, and each partition has an associated filtering function. We focus on partitioning the observation space utilizing vector quantization and restrict the filtering function within each partition to be linear. In this formulation, a weighted sum of the observation samples forms the estimate, where the weights are allowed to be unique within each partition. The partitions are selected and weights tuned by training on a representative set of data. It is shown that the proposed data adaptive processing allows for greater detail preservation when encountering nonstationarities in the data and yields superior results compared to several previously defined filters. Optimization of the PWS filters is addressed and experimental results are provided illustrating the performance of PWS filters in the restoration of images corrupted by Gaussian noise

Published in:

Image Processing, IEEE Transactions on  (Volume:8 ,  Issue: 5 )