Scheduled System Maintenance on December 17th, 2014:
IEEE Xplore will be upgraded between 2:00 and 5:00 PM EST (18:00 - 21:00) UTC. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Wavelet-domain filtering for photon imaging systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Nowak, R.D. ; Dept. of Electr. & Comput. Eng., Michigan State Univ., East Lansing, MI, USA ; Baraniuk, R.G.

Many imaging systems rely on photon detection as the basis of image formation. One of the major sources of error in these systems is Poisson noise due to the quantum nature of the photon detection process. Unlike additive Gaussian white noise, the variance of Poisson noise is proportional to the underlying signal intensity, and consequently separating signal from noise is a very difficult task. In this paper, we perform a novel gedankenexperiment to devise a new wavelet-domain filtering procedure for noise removal in photon imaging systems. The filter adapts to both the signal and the noise, and balances the trade-off between noise removal and excessive smoothing of image details. Designed using the statistical method of cross-validation, the filter is simultaneously optimal in a small-sample predictive sum of squares sense and asymptotically optimal in the mean-square-error sense. The filtering procedure has a simple interpretation as a joint edge detection/estimation process. Moreover, we derive an efficient algorithm for performing the filtering that has the same order of complexity as the fast wavelet transform itself. The performance of the new filter is assessed with simulated data experiments and tested with actual nuclear medicine imagery

Published in:

Image Processing, IEEE Transactions on  (Volume:8 ,  Issue: 5 )