Cart (Loading....) | Create Account
Close category search window

Scalable WDM access network architecture based on photonic slot routing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chlamtac, I. ; Centre of Adv. Telecommun. Syst. & Services, Texas Univ., Dallas, TX, USA ; Elek, V. ; Fumagalli, A. ; Szabo, C.

This paper introduces an approach to solving the fundamental scalability problem of all-optical packet switching wavelength-division multiplexing (WDM) access networks. Current optical networks cannot be scaled by simply adding nodes to existing systems due to the accumulation of insertion losses and/or the limited number of wavelengths. Scalability through bridging requires, on the other hand, the capability to switch packets among adjacent subnetworks on a wavelength basis. Such a solution is, however, not possible due to the unavailability of fast-switching wavelength sensitive devices. In this paper, we propose a scalable WDM access network architecture based on a recently proposed optical switching approach, termed photonic slot routing. According to this approach, entire slots, each carrying multiple packets (one on each wavelength) are “transparently” routed through the network as single units so that wavelength sensitive data flows can be handled using fast-switching wavelength nonsensitive devices based on proven technologies. The paper shows that the photonic slot routing technique can be successfully used to achieve statistical multiplexing of the optical bandwidth in the access network, thus providing a cost-effective solution to today's increasing bandwidth demand for data transmissions

Published in:

Networking, IEEE/ACM Transactions on  (Volume:7 ,  Issue: 1 )

Date of Publication:

Feb 1999

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.