Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

High-level modeling of switching activity with application to low-power DSP system synthesis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Lundberg, M. ; Div. of Signal Process., Lulea Univ. of Technol., Sweden ; Muhammad, K. ; Roy, K. ; Wilson, S.K.

We address the issue of high-level synthesis of low-power digital signal processing (DSP) systems by proposing switching activity models. In particular, we present a technology independent hierarchical scheme to compare relative power performance of two competing DSP systems. The basic building blocks considered for such system are a full-adder and a one-bit delay. Estimates of switching activity at the output of these building blocks is used to model the activity in different architectural primitives used for building DSP systems. This method is very fast and simple and simulations show accuracy within 4% of extensive bit-level simulations. Therefore, it can easily be integrated into current communications/DSP CAD tools for low-power applications. The models show that the choice of multiplier/multiplicand is important when using array multipliers in a data-path. If the input signal with smaller variance is chosen as the as the multiplicand, up to 20% savings in switching activity can be achieved. This observation is verified by analog simulation

Published in:

Acoustics, Speech, and Signal Processing, 1999. Proceedings., 1999 IEEE International Conference on  (Volume:4 )

Date of Conference:

15-19 Mar 1999