Cart (Loading....) | Create Account
Close category search window
 

Prospects for large high-temperature superconducting power transformers: conclusions from a design study

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Sykulski, J.K. ; Dept. of Electr. Eng., Southampton Univ., UK ; Beduz, C. ; Stoll, R.L. ; Harris, M.R.
more authors

A design feasibility study has been conducted for a 240 MVA high-temperature superconducting grid auto-transformer. Conclusions are relevant to superconducting power transformers in general. It is argued that economic benefits may be predicted, subject to assumptions about achievable conductor properties, costs of components and power system operating requirements. Liquid nitrogen cryogenics is relatively cheap and simple, and refrigeration power demand is reduced by a factor of the order of 20 compared to the low-temperature case. Attention is drawn to the importance of AC losses in the superconductor and the difficulty of keeping these sufficiently low. Various technical problem areas, and their likely influence on the overall design concept, are reviewed. Three particularly important influences are identified: insulating properties of liquid nitrogen coolant; required transformer performance in the through fault condition; and mechanical strength to withstand electromagnetic forces. Design proposals are detailed, and recommendations made for future development of high-temperature superconductors for power applications

Published in:

Electric Power Applications, IEE Proceedings -  (Volume:146 ,  Issue: 1 )

Date of Publication:

Jan 1999

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.