By Topic

Mean field decomposition of a posteriori probability for MRF-based unsupervised textured image segmentation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Noda, H. ; Kyushu Inst. of Technol., Kitakyushu, Japan ; Shirazi, M.N. ; Bing Zhang ; Kawaguchi, E.

This paper proposes a Markov random field (MRF) model-based method for unsupervised segmentation of multispectral images consisting of multiple textures. To model such textured images, a hierarchical MRF is used with two layers, the first layer representing an unobservable region image and the second layer representing multiple textures which cover each region. This method uses the expectation-maximization (EM) method for model parameter estimation, where in order to overcome the well-noticed computational problem in the expectation step, we approximate the Baum function using mean-field-based decomposition of a posteriori probability. Given provisionally estimated parameters at each iteration in the EM method, a provisional segmentation is carried out using local a posteriori probability of each pixel's region label, which is derived by mean-field-based decomposition of a posteriori probability of the whole region image

Published in:

Acoustics, Speech, and Signal Processing, 1999. Proceedings., 1999 IEEE International Conference on  (Volume:6 )

Date of Conference:

15-19 Mar 1999