By Topic

Modeling and simulation-the effects of grain coarsening on local stresses and strains in solder microstructure

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Chanchani, R. ; Sandia Nat. Labs., Albuquerque, NM, USA

A critical issue in the long-term reliability of solder connections used in electronic packages is joint failure during thermal cycling. At present, solder is assumed to be a homogeneous single-phase metal in most finite element analyses to predict solder joint fatigue failures. However, in the last decade, several metallurgical studies have shown that solder microstructure may have a role in early solder joint failures. Investigators have observed that solder microstructure coarsens in local bands during aging and during thermal cycle fatigue. In a failed solder joint, the fatigue cracks are found in these bands of coarse grains. It is speculated that the grain coarsening increases local strains within the microstructure, thereby increasing the likelihood for a crack to initiate. The objective of this study is to model and simulate the effect of grain coarsening on local stresses and strains. During solidification of eutectic Pb/Sn solder, two types of microstructures form: lamellar and equiaxed. In this study, the author has developed a computer code to generate both types of microstructures of varying grain coarseness. This code is incorporated into the finite element code that analyzes the local stresses and strains within the computer-generated microstructure. The FE code, specifically developed for this study, uses an algorithm involving the sparse matrix and iterative solver. This code on a typical single-processor machine will allow the analyst to use over 1 million degrees of freedom

Published in:

Advanced Packaging Materials: Processes, Properties and Interfaces, 1999. Proceedings. International Symposium on

Date of Conference:

14-17 Mar 1999