By Topic

A low-voltage triggering SCR for on-chip ESD protection at output and input pads

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chatterjee, A. ; Texas Instrum. Inc., Dallas, TX, USA ; Polgreen, T.

A novel silicon-controlled rectifier (SCR) structure for on-chip protection against electrostatic discharge (ESD) stress at output or input pads is presented. The SCR switches to an ON state at a trigger voltage determined by the gate length of an incorporated nMOS-like structure. Thus, the new SCR can be designed to consistently trigger at a voltage low enough to protect nMOS transistors from ESD. The capability of a protection circuit using the new SCR design is experimentally demonstrated. The tunability of the SCR trigger voltage with reference to the nMOS breakdown voltage is exploited to improve the human body model (HBM) ESD failure threshold of an output buffer from 1500 to 5000 V.<>

Published in:

Electron Device Letters, IEEE  (Volume:12 ,  Issue: 1 )