By Topic

Fault-free Hamiltonian cycles in faulty arrangement graphs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sun-Yuan Hsieh ; Dept. of Comput. Sci. & Inf. Eng., Nat. Taiwan Univ., Taipei, Taiwan ; Gen-Huey Chen ; Chin-Wen Ho

The arrangement graph An,k, which is a generalization of the star graph (n-k=1), presents more flexibility than the star graph in adjusting the major design parameters: number of nodes, degree, and diameter. Previously, the arrangement graph has proved Hamiltonian. In this paper, we further show that the arrangement graph remains Hamiltonian even if it is faulty. Let |Fe| and |Fv| denote the numbers of edge faults and vertex faults, respectively. We show that An,k is Hamiltonian when 1) (k=2 and n-k⩾4, or k⩾3 and n-k⩾4+[k/2]), and |Fe|⩽k(n-k)-2, or 2) k⩾2, n-k⩾2+[k/2], and |Fe|⩽k(n-k-3)-1, or 3) k⩾2, n-k⩾3, and |Fe |⩽k, or 4) n-k⩾3 and |Fv|⩽n-3, or 5) n-k⩾3 and |Fv|+|Fe|⩽k. Besides, for An,k with n-k=2, we construct a cycle of length at least 1) [n!/(n-k!)]-2 if |Fe|⩽k-1, or 2) [n!/(n-k)!]-|Fv |-2(k-1) if |Fv|⩽k-1, or 3) [n!/(n-k)!]-|Fv |-2(k-1) if |Fe|+|Fv|⩽k-1, where [n!/(n-k)!] is the number of nodes in An,k

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:10 ,  Issue: 3 )