By Topic

SLAVE: a genetic learning system based on an iterative approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Gonzblez, A. ; Dept. de Ciencias de la Comput. e Inteligencia Artificial, Granada Univ., Spain ; Perez, R.

SLAVE is an inductive learning algorithm that uses concepts based on fuzzy logic theory. This theory has been shown to be a useful representational tool for improving the understanding of the knowledge obtained from a human point of view. Furthermore, SLAVE uses an iterative approach for learning based on the use of a genetic algorithm (GA) as a search algorithm. We propose a modification of the initial iterative approach used in SLAVE. The main idea is to include more information in the process of learning one individual rule. This information is included in the iterative approach through a different proposal of calculus of the positive and negative example to a rule. Furthermore, we propose the use of a new fitness function and additional genetic operators that reduce the time needed for learning and improve the understanding of the rules obtained

Published in:

Fuzzy Systems, IEEE Transactions on  (Volume:7 ,  Issue: 2 )