Cart (Loading....) | Create Account
Close category search window
 

Reduction of fuzzy rule base via singular value decomposition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yeung Yam ; Dept. of Mech. & Aumat. Eng., Chinese Univ. of Hong Kong, Shatin, Hong Kong ; Baranyi, P. ; Chi-Tin Yang

Introduces a singular value-based method for reducing a given fuzzy rule set. The method conducts singular value decomposition of the rule consequents and generates certain linear combinations of the original membership functions to form new ones for the reduced set. The present work characterizes membership functions by the conditions of sum normalization (SN), nonnegativeness (NN), and normality (NO). Algorithms to preserve the SN and NN conditions in the new membership functions are presented. Preservation of the NO condition relates to a high-dimensional convex hull problem and is not always feasible in which case a closed-to-NO solution may be sought. The proposed method is applicable regardless of the adopted inference paradigms. With product-sum-gravity inference and singleton support fuzzy rule base, output errors between the full and reduced fuzzy set are bounded by the sum of the discarded singular values. The work discusses three specific applications of fuzzy reduction: fuzzy rule base with singleton support, fuzzy rule base with nonsingleton support (which includes the case of missing rules), and the Takagi-Sugeno-Kang (TSK) model. Numerical examples are presented to illustrate the reduction process

Published in:

Fuzzy Systems, IEEE Transactions on  (Volume:7 ,  Issue: 2 )

Date of Publication:

Apr 1999

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.