By Topic

Use of Coifman intervallic wavelets in 2-D and 3-D scattering problems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
G. Pan ; Dept. of Electr. Eng., Arizona State Univ., Tempe, AZ, USA ; M. Toupikov ; J. Du ; B. K. Gilbert

The method of moments (MOM) has been used to solve antenna and scattering problems for several decades, due both to its in handling and to its for electrically large problems, the MOM often becomes incapable of achieving solutions due to its requirements for vast amounts of local memory and processor cycles. To overcome this difficulty, orthonormal wavelets have been introduced, which create very sparse moment matrices that can be evaluated by iterative techniques. Nevertheless, the traditional orthonormal wavelets have demonstrated several limitations. The use of intervallic wavelets is presented; they form an orthonormal basis and preserve the same multi-resolution analysis as other unbounded wavelets. In contrast to periodic wavelets, endpoint values are not restricted if the function is expanded in terms of wavelets. Very sparse impedance matrices have been obtained with this method. Zero elements of the matrices are identified directly, without using a truncation scheme with an artificially established threshold. The majority of matrix elements are evaluated directly, without performing numerical integration procedures such as Gaussian quadrature. The construction of intervallic wavelets is presented. Numerical examples of 2-D and 3-D scattering problems are discussed, and the relative error of this method is studied analytically

Published in:

IEE Proceedings - Microwaves, Antennas and Propagation  (Volume:145 ,  Issue: 6 )