By Topic

3-D object recognition using bipartite matching embedded in discrete relaxation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
W. -Y. Kim ; Robot Vision Lab., Purdue Univ., West Lafayette, IN, USA ; A. C. Kak

The authors show how large efficiencies can be achieved in model-based 3-D vision by combining the notions of discrete relaxation and bipartite matching. The computational approach presented is capable of pruning large segments of search space-an indispensable step when the number of objects in the model library is large and when recognition of complex objects with a large number of surfaces is called for. Bipartite matching is used for quick wholesale rejection of inapplicable models and for the determination of compatibility of a scene surface with a potential model surface taking into account relational considerations. The time complexity function associated with those aspects of the procedure that are implemented via bipartite matching is provided. The algorithms do not take more than a couple of iterations, even for objects with more than 30 surfaces

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:13 ,  Issue: 3 )